The Correspondence Between n-dimensional Euclidean Space and the Product of n Real Lines

نویسنده

  • Artur Korniłowicz
چکیده

The articles [2], [6], [10], [4], [7], [18], [8], [13], [1], [3], [5], [15], [16], [17], [21], [22], [9], [19], [20], [11], [14], and [12] provide the notation and terminology for this paper. Let F be a set. We introduce F is n-long as a synonym of F is empty. We introduce F is finite sequence-membered as an antonym of F is empty. We introduce F is quasi-prebasis as an antonym of F is empty. We introduce F is e-quasi-basis as an antonym of F is empty. For simplicity, we use the following convention: x, y are sets, i, n are natural numbers, r, s are real numbers, and f1, f2 are n-long real-valued finite sequences. Let s be a real number and let r be a non positive real number. One can verify the following observations: ∗ ]s− r, s+ r[ is empty, ∗ [s− r, s+ r[ is empty, and ∗ ]s− r, s+ r] is empty. Let s be a real number and let r be a negative real number. Observe that [s− r, s+ r] is empty.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel Transport Frame in 4 -dimensional Euclidean Space

In this work, we give parallel transport frame of a curve and we introduce the relations between the frame and Frenet frame of the curve in 4-dimensional Euclidean space. The relation which is well known in Euclidean 3-space is generalized for the …rst time in 4-dimensional Euclidean space. Then we obtain the condition for spherical curves using the parallel transport frame of them. The conditi...

متن کامل

یادداشتی بر دوگانی AdS/CFT

We study duality of field theories in (d+1) dimensional flat Euclidean space and (d+1) dimensional Euclidean AdS space for both scalar the and vector fields. In the case of the scalar theory, the injective map between conformally coupled massless scalars in two spaces is reviewed. It is shown that for vector fields the injective map exists only in four dimensions. Since Euclidean AdS space is e...

متن کامل

From the Lorentz Transformation Group in Pseudo-Euclidean Spaces to Bi-gyrogroups

‎The Lorentz transformation of order $(m=1,n)$‎, ‎$ninNb$‎, ‎is the well-known ‎Lorentz transformation of special relativity theory‎. ‎It is a transformation of time-space coordinates of the ‎pseudo-Euclidean space $Rb^{m=1,n}$ of one time dimension and ‎$n$ space dimensions ($n=3$ in physical applications)‎. ‎A Lorentz transformation without rotations is called a {it boost}‎. ‎Commonly‎, ‎the ...

متن کامل

Gyroharmonic Analysis on Relativistic Gyrogroups

‎Einstein‎, ‎M"{o}bius‎, ‎and Proper Velocity gyrogroups are relativistic gyrogroups that appear as three different realizations of the proper Lorentz group in the real Minkowski space-time $bkR^{n,1}.$ Using the gyrolanguage we study their gyroharmonic analysis‎. ‎Although there is an algebraic gyroisomorphism between the three models we show that there are some differences between them‎. ‎Our...

متن کامل

Special Bertrand Curves in semi-Euclidean space E4^2 and their Characterizations

In [14] Matsuda and Yorozu.explained that there is no special Bertrand curves in Eⁿ and they new kind of Bertrand curves called (1,3)-type Bertrand curves Euclidean space. In this paper , by using the similar methods given by Matsuda and Yorozu [14], we obtain that bitorsion of the quaternionic curve is not equal to zero in semi-Euclidean space E4^2. Obtain (N,B2) type quaternionic Bertrand cur...

متن کامل

Efficient Approximation Algorithms for Point-set Diameter in Higher Dimensions

We study the problem of computing the diameter of a  set of $n$ points in $d$-dimensional Euclidean space for a fixed dimension $d$, and propose a new $(1+varepsilon)$-approximation algorithm with $O(n+ 1/varepsilon^{d-1})$ time and $O(n)$ space, where $0 < varepsilonleqslant 1$. We also show that the proposed algorithm can be modified to a $(1+O(varepsilon))$-approximation algorithm with $O(n+...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010